2024年浙江省成考高起点《文数》重点考点:数列的通项与求和

发布日期:2024-03-12 来源:浙江成考网

●难点磁场

(★★★★★)设{an}是正数组成的数列,其前n项和为Sn,并且对于所有的自然数n,an与2的等差中项等于Sn与2的等比中项.

(1)写出数列{an}的前3项.

(2)求数列{an}的通项公式(写出推证过程)

(3)令bn= (n∈N*),求 (b1+b2+b3+…+bn-n).

●案例探究

[例1]已知数列{an}是公差为d的等差数列,数列{bn}是公比为q的(q∈R且q≠1)的等比数列,若函数f(x)=(x-1)2,且a1=f(d-1),a3=f(d+1),b1=f(q+1),b3=f(q-1),

(1)求数列{an}和{bn}的通项公式;

(2)设数列{cn}的前n项和为Sn,对一切n∈N*,都有 =an+1成立,求 .

命题意图:本题主要考查等差、等比数列的通项公式及前n项和公式、数列的极限,以及运算能力和综合分析问题的能力.属★★★★★级题目.

知识依托:本题利用函数思想把题设条件转化为方程问题非常明显,而(2)中条件等式的左边可视为某数列前n项和,实质上是该数列前n项和与数列{an}的关系,借助通项与前n项和的关系求解cn是该条件转化的突破口.

错解分析:本题两问环环相扣,(1)问是基础,但解方程求基本量a1、b1、d、q,计算不准易出错;(2)问中对条件的正确认识和转化是关键.

技巧与方法:本题(1)问运用函数思想转化为方程问题,思路较为自然,(2)问“借鸡生蛋”构造新数列{dn},运用和与通项的关系求出dn,丝丝入扣.

解:(1)∵a1=f(d-1)=(d-2)2,a3=f(d+1)=d2,

∴a3-a1=d2-(d-2)2=2d,

∵d=2,∴an=a1+(n-1)d=2(n-1);又b1=f(q+1)=q2,b3=f(q-1)=(q-2)2,

∴ =q2,由q∈R,且q≠1,得q=-2,

∴bn=b·qn-1=4·(-2)n-1

(2)令 =dn,则d1+d2+…+dn=an+1,(n∈N*),

∴dn=an+1-an=2,

∴ =2,即cn=2·bn=8·(-2)n-1;∴Sn= [1-(-2)n].

浙江成考便捷服务

2025年全国成人高考还有

考试时间:暂无数据
浙江成考报名指导 浙江成考培训辅导

请考生们早做准备,提前备考!

浙江成考咨询老师

浙江成考咨询老师

微信扫码添加成考老师
①学习交流、②考试提醒、③自考解答 ④自考资料、⑤新闻通知、⑥备考指导