2024年浙江省成考高起点《文数》重点考点:数列综合应用

发布日期:2024-03-12 来源:浙江成考网

●难点磁场

(★★★★★)已知二次函数y=f(x)在x= 处取得最小值- (t>0),f(1)=0.

(1)求y=f(x)的表达式;

(2)若任意实数x都满足等式f(x)·g(x)+anx+bn=xn+1[g(x)]为多项式,n∈N*),试用t表示an和bn;

(3)设圆Cn的方程为(x-an)2+(y-bn)2=rn2,圆Cn与Cn+1外切(n=1,2,3,…);{rn}是各项都是正数的等比数列,记Sn为前n个圆的面积之和,求rn、Sn.

●案例探究

[例1]从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业,根据规划,本年度投入800万元,以后每年投入将比上年减少 ,本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加 .

(1)设n年内(本年度为第一年)总投入为an万元,旅游业总收入为bn万元,写出an,bn的表达式;

(2)至少经过几年,旅游业的总收入才能超过总投入?

命题意图:本题主要考查建立函数关系式、数列求和、不等式等基础知识;考查综合运用数学知识解决实际问题的能力,本题有很强的区分度,属于应用题型,正是近几年高考的热点和重点题型,属★★★★★级题目.

知识依托:本题以函数思想为指导,以数列知识为工具,涉及函数建模、数列求和、不等式的解法等知识点.

错解分析:(1)问an、bn实际上是两个数列的前n项和,易与“通项”混淆;(2)问是既解一元二次不等式又解指数不等式,易出现偏差.

技巧与方法:正确审题、深刻挖掘数量关系,建立数量模型是本题的灵魂,(2)问中指数不等式采用了换元法,是解不等式常用的技巧.

解:(1)第1年投入为800万元,第2年投入为800×(1- )万元,…第n年投入为800×(1- )n-1万元,所以,n年内的总投入为

an=800+800×(1- )+…+800×(1- )n-1= 800×(1- )k-1

=4000×[1-( )n]

第1年旅游业收入为400万元,第2年旅游业收入为400×(1+ ),…,第n年旅游业收入400×(1+ )n-1万元.所以,n年内的旅游业总收入为

bn=400+400×(1+ )+…+400×(1+ )k-1= 400×( )k-1.

=1600×[( )n-1]

(2)设至少经过n年旅游业的总收入才能超过总投入,由此bn-an>0,即:

1600×[( )n-1]-4000×[1-( )n]>0,令x=( )n,代入上式得:5x2-7x+2>0.解此不等式,得x< ,或x>1(舍去).即( )n< ,由此得n≥5.

∴至少经过5年,旅游业的总收入才能超过总投入.

浙江成考便捷服务

2025年全国成人高考还有

考试时间:暂无数据
浙江成考报名指导 浙江成考培训辅导

请考生们早做准备,提前备考!

浙江成考咨询老师

浙江成考咨询老师

微信扫码添加成考老师
①学习交流、②考试提醒、③自考解答 ④自考资料、⑤新闻通知、⑥备考指导